806 research outputs found

    CLAM, a continuous line alignment and monitoring method for RICH mirrors

    Get PDF
    A method is proposed for the angular alignment of RICH mirrors and for its monitoring, in particular for the COMPASS RICH-1 mirror system. Observing (by means of four cameras) apparent discontinuities in the images of continuous linear objects reflected by the mirrors surface, a relative misalignment of adjacent mirrors can be deduced and then corrected. The method can attain a sensitivity of at least 0.1 mrad, and can also be applied on-line to keep under control the stability of the mirrors during data taking

    RHIP, a Radio-controlled High-Voltage Insulated Picoammeter and its usage in studying ion backflow in MPGD-based photon detectors

    Full text link
    A picoammeter system has been developed and engineering. It consists in a current-voltage converter, based on an operational amplifier with very low input current, a high precision ADC, a radio controlled data acquisition unit and the computer-based control, visualization and storage. The precision is of the order of a tenth of picoampers and it can measure currents between electrodes at potentials up to 8 kV. The system is battery powered and a number of strategies have been implemented to limit the power consumption. The system is designed for multichannel applications, up to 256 parallel channels. The overall implementation is cost-effective to make the availability of multichannel setups easily affordable. The design, implementation and performance of the picoammeter system are described in detail as well as a an application: the measurement of ion backflow in MPGD-based photon detectors.Comment: 5th International Conference on Micro-Pattern Gas Detectors (MPGD2017), presentation by Silvia Dalla Torr

    Remote alignment of large mirror array for RICH detectors

    Get PDF
    Image focusing in large RICH detectors is obtained by composite systems of mirror elements. Monitoring and adjusting the alignment of the mirror elements during data taking are important handles to improve the detector resolution. Mirror adjustment via piezoelectric actuators can combine unprecedented accuracy and match some fundamental requirements: the detector material budget can be kept low and the high purity of the gas radiator can be preserved, a prerequisite when UV photons are detected. A system based on this principle, well suited for COMPASS RICH-1 mirrors, is proposed

    Study of MicroPattern Gaseous detectors with novel nanodiamond based photocathodes for single photon detection in EIC RICH

    Full text link
    Identification of high momentum hadrons at the future EIC is crucial, gaseous RICH detectors are therefore viable option. Compact collider setups impose to construct RICHes with small radiator length, hence significantly limiting the number of detected photons. More photons can be detected in the far UV region, using a windowless RICH approach. QE of CsI degrades under strong irradiation and air contamination. Nanodiamond based photocathodes (PCs) are being developed as an alternative to CsI. Recent development of layers of hydrogenated nanodiamond powders as an alternative photosensitive material and their performance, when coupled to the THick Gaseous Electron Multipliers (THGEM)-based detectors, are the objects of an ongoing R\&D. We report about the initial phase of our studies.Comment: 3 pages, 5 figures, RICH2018 conference proceedin

    Simulation studies related to the particle identification by the forward and backward RICH detectors at Electron Ion Collider

    Full text link
    The Electron-Ion collider (EIC) will be the ultimate facility to study the dynamics played by the colored quarks and gluons to the emergence of the global phenomenology of the nucleons and nuclei as described by Quantum Chromodynamics. The physics programs will greatly rely on efficient particle identification (PID) in both the forward and the backward regions. The forward and the backward RICHes of the EIC have to be able to cover wide acceptance and momentum ranges; in the forward region a dual radiator RICH (dRICH) is foreseen and in the backward region a proximity-focusing RICH can be foreseen to be employed. The geometry and the performance studies of the dRICH have been performed as prescribed in the EIC Yellow Report using the ATHENA software framework. This part of our work reports the effort following the call for EIC detector proposal the studies related to the forward and the backward RICHes performance. In the forward region, dRICH performance showed a pion-kaon separation from around 1 GeV/c to 50 GeV/c at a three sigma level; the proximity focusing RICH (pfRICH) foreseen for the backward region can reach three sigma separation up to 3 GeV/c for e/π\pi and up to 10 GeV/c for π\pi/K mass hypothesis.Comment: 4 pages, 8 figure

    Characterization of the water diffusion in GEM foil material

    Get PDF
    Systematic studies on the GEM foil material are performed to measure the moisture diffusion rate and saturation level.These studies are important because the presence of this compound inside the detector’s foil can possibly change its mechanical and electrical properties,and in such a way,the detector performance can be affected.To understand this phenomenon,a model is developed with COMSOL Multiphysicsv.4.3 which described the adsorption and diffusion within the geometry of GEM foil,the concentration profiles and the time required to saturate the foil.The COMSOL model is verified by experimental observations on a GEM foil sample.This note will describe the model and its experimental verification results
    • …
    corecore